Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animal ; 17(12): 101013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952302

RESUMO

Several studies tried to identify digestive determinants of individual variation in feed efficiency between fattening bulls, because of their importance for breeding and management strategies. Most studies focused on single traits or single diet. Little is known about diet-dependent differences in digestive determinants and on their relative importance in distinguishing divergent residual feed intake (RFI) bulls. This research aimed (i) to identify digestive traits that differed between bulls diverging in RFI and fed a maize silage- or a grass silage-based diets; (ii) to highlight the relationships between RFI and digestive traits, and (iii) to explore the hierarchy among digestive traits in discriminating RFI divergent bulls. After an initial RFI test of 84 days on 100 Charolais growing bulls fed two different diets based on grass silage (GS), or maize silage (MS), the 32 most RFI divergent bulls were selected (eight efficient RFI- and eight inefficient RFI+ bulls per diet) and measured thereafter for total tract apparent digestibility and transit rate, enteric gas emissions (CH4 and H2), rumen pH, and feeding behaviour. Rumen particle size and visceral organ and reticulo-omasal orifice (ROO) sizes and rumen and ileum histology were measured at slaughter on the 32 selected extreme RFI bulls. Irrespective of the diet, efficient bulls (RFI-) had lower rumen size, CH4 yield (g/kg DM intake; tendency), lower number of cells in the ileal crypts, tended to have longer time of rumen pH below 5.8 and lower proportion of small size particles in rumen content than non-efficient bulls (RFI+). A long-term test for feed efficiency (197 d on average) was performed on the whole experimental period until slaughter for the 100 animals. The long-term RFI value was negatively related to time spent in activity other than ingestion, rumination, and resting, and positively related (tendency) to the duration of ingestion events, to rumen and abomasum size, irrespective of the diet. Diet-dependent effects were noted: with GS, efficient (RFI-) bulls showed a slower transit rate, whereas with MS, efficient (RFI-) bulls tended to have shorter resting events and a smaller ROO than inefficient bulls (RFI+). The transit rate and the ROO size tended to be positively related, while total tract apparent digestibility of nitrogen was negatively related to long-term RFI value, but only in GS. Rumen size appeared as the most discriminating digestive variable between RFI divergent bulls, but this result should be validated on a larger number of animals and diets.


Assuntos
Silagem , Zea mays , Bovinos , Animais , Masculino , Silagem/análise , Poaceae , Ração Animal/análise , Melhoramento Vegetal , Dieta/veterinária , Ingestão de Alimentos , Digestão , Rúmen/química
2.
Animal ; 17(11): 101005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37897870

RESUMO

The ruminant requirements for essential fatty acids (EFAs), particularly linoleic acid (LA) and alpha-linolenic acid (ALA), have not been fully determined, although evidence suggests that an adequate supply of polyunsaturated fatty acids (FAs) could improve immunity and reproduction in transition cows. In previous studies, we predicted EFA intake for a group of cows based on animal characteristics and milk EFA secretions. However, to support precision livestock feeding, we need to match the nutrient requirements and intakes of each cow as closely as possible. Our group-level predictions may not be accurate enough to estimate the EFA intake of an individual cow, due to inter-individual variations in EFA digestion and metabolism related to differences in feed intake, intake patterns, and the composition and functioning of the rumen microbiota. To address this issue, here we set out to establish specific equations that predict EFA intake for an individual cow based on the difference (i.e. the residuals) between observed EFA intake and the predicted EFA intake based on our group-level equations. We studied a database of individual dairy cows (26 experiments; 503 datapoints from three research teams) and we predicted the residuals from (1) dietary and animal-related factors (i.e. full predictions) and (2) animal-related factors only (i.e. field predictions), which are considered more field-amenable. The variance of predicted LA and log ALA intake was explained to 68% by observed LA intake and 66% by observed log ALA intake, respectively. The residuals of LA intake were predicted by dietary ALA content, total FA intake, BW, milk yield and fat content in full predictions, and by BW, feeding level, milk yield and fat content, and sum of milk C4:0 to C14:0 FA in field predictions. The log residuals of ALA intake were predicted by dietary NDF and total FA contents, NDF intake, BW, milk protein, LA and ALA contents, and fat yield in full predictions, and by BW, DM intake, milk LA and ALA contents, and fat yield in field predictions. The field predictions showed a moderate loss of accuracy compared to full predictions based on RMSE of prediction (from 38 to 54 g/d for LA and from 0.090 to 0.12 log (g/d) for ALA). This work is the first to predict the EFA intake of an individual cow based on previously established group-level predictions of EFA intake adjusted for dietary and animal-related factors.


Assuntos
Dieta , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Dieta/veterinária , Lactação , Ácidos Graxos Essenciais/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico/metabolismo , Ácidos Graxos/metabolismo , Ração Animal/análise
3.
J Dairy Sci ; 106(11): 7675-7697, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641332

RESUMO

The extrusion of leguminous seeds induces the formation of Maillard reaction compounds (MRC) as a product of protein advanced glycation and oxidation, which lowers protein degradability in the rumen. However, the quantitative relationship between the parameters of pretreatment (i.e., addition of reducing sugars) and extrusion, and the formation of MRC has not been established yet. Moreover, the fate of the main stable MRC, Nε-carboxymethyl-lysine (CML), in the excretory routes has never been investigated in ruminants. We aimed to test the effects of the temperature of extrusion of white lupines with or without addition of reducing sugars on the formation of MRC, crude protein (CP) degradability in the rumen, N use efficiency for milk production (milk N/N intake), and performance of dairy cows. Two experiments with a replicated 4 × 4 Latin square design were conducted simultaneously with 16 (3 rumen-cannulated) multiparous Holstein cows to measure indicators of ruminal CP degradability (ruminal NH3 concentration, branched-chain volatile fatty acids), metabolizable protein supply (plasma essential AA concentration), N use efficiency (N isotopic discrimination), and dairy performance. In parallel, apparent total-tract digestibility of dry matter, organic matter, neutral detergent fibers, N, total Lys and CML, and partition of N and CML were measured with 4 cows in both experiments. The diets consisted on a DM basis of 20% raw or extruded lupines and 80% basal mixed ration of corn silage, silage and hay from permanent grasslands, pelleted concentrate, and a vitaminized mineral mix. Expected output temperatures of lupine extrusion were 115°C, 135°C, and 150°C, without and with the addition of reducing sugars before extrusion. The extrusion numerically reduced the in vitro ruminal CP degradability of the lupines, and consequently increased the predicted supply of CP to the small intestine. Nitrogen balance and urinary N excretion did not differ among dietary treatments in either experiment. Milk yield and N use efficiency for milk production increased with extrusion of lupines at 150°C without addition of reducing sugars compared with raw lupines. Nitrogen isotopic discrimination between dietary and animal proteins (the difference between δ15N in plasma and δ15N in the diet) were lower with lupines extruded at 150°C without and with addition of reducing sugars. Regardless of sugar addition, milk true protein yield was not affected, but milk urea concentration and fat:protein ratio were lower with lupines extruded at 150°C than with raw lupines. In the CML partition study, we observed that on average 26% of the apparently digested CML was excreted in urine, and a much lower proportion (0.63% on average) of the apparently digested CML was secreted in milk, with no differences among dietary treatments. In conclusion, we showed that the extrusion of white lupines without or with addition of reducing sugars numerically reduced enzymatic CP degradability, with limited effects on N partition, but increased milk yield and N use efficiency at the highest temperature of extrusion without addition of reducing sugars.

4.
Animal ; 17 Suppl 3: 100830, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263815

RESUMO

The production of enteric methane in the gastrointestinal tract of livestock is considered as an energy loss in the equations for estimating energy metabolism in feeding systems. Therefore, the spared energy resulting from specific inhibition of methane emissions should be re-equilibrated with other factors of the equation. And, it is commonly assumed that net energy from feeds increases, thus benefitting production functions, particularly in ruminants due to the important production of methane in the rumen. Notwithstanding, we confirm in this work that inhibition of emissions in ruminants does not transpose into consistent improvements in production. Theoretical calculations of energy flows using experimental data show that the expected improvement in net energy for production is small and difficult to detect under the prevailing, moderate inhibition of methane production (≈25%) obtained using feed additives inhibiting methanogenesis. Importantly, the calculation of energy partitioning using canonical models might not be adequate when methanogenesis is inhibited. There is a lack of information on various parameters that play a role in energy partitioning and that may be affected under provoked abatement of methane. The formula used to calculate heat production based on respiratory exchanges should be validated when methanogenesis is inhibited. Also, a better understanding is needed of the effects of inhibition on fermentation products, fermentation heat, and microbial biomass. Inhibition induces the accumulation of H2, the main substrate used to produce methane, that has no energetic value for the host, and it is not extensively used by the majority of rumen microbes. Currently, the fate of this excess of H2 and its consequences on the microbiota and the host are not well known. All this additional information will provide a better account of energy transactions in ruminants when enteric methanogenesis is inhibited. Based on the available information, it is concluded that the claim that enteric methane inhibition will translate into more feed-efficient animals is not warranted.


Assuntos
Gado , Microbiota , Animais , Gado/metabolismo , Metano/metabolismo , Ruminantes/metabolismo , Fermentação , Metabolismo Energético , Rúmen/metabolismo
5.
Animal ; 16(11): 100661, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327797

RESUMO

Linoleic acid (LA) and alpha-linolenic acid (ALA) are essential fatty acids found in variable quantities in ruminant feedstuffs. Revision of French feed unit systems in 2018 has proposed the reassessment of energy requirements through a between-experiment approach expressing metabolisable energy supply as a function of the energy expenditures for maintenance and production, with these expenditures that reflect homeorhetic regulations. Based on the same approach, LA and ALA intake can be related to animal characteristics (i.e., BW) reflecting maintenance expenditures and secretion characteristics (i.e., milk yield, milk fat content and contents of LA and ALA in milk fat). Therefore, the objective of this work was to analyse the between-experiment relationships between ingested, duodenal, or absorbed flows of LA and ALA, BW and milk LA and ALA secretion by meta-analysis in mid-lactation dairy cows. These relationships were analysed using LA and ALA subsets of 96 and 99 experiments, respectively. Between-experiment regressions of daily flows of ingested, duodenal or absorbed LA and ALA on BW and milk LA and ALA flows were studied, with statistical unit defined as the mean of within-experiment treatments. For LA, the BW-associated coefficient was 0.019 (±0.0034) g absorbed LA/d per kg BW and milk LA secretion-associated coefficient was 0.70 (±0.081) g absorbed LA/g of LA secreted into milk. For ALA, the BW-associated coefficient was 0.0058 (±0.00093) g absorbed ALA/d per kg BW and milk ALA secretion-associated coefficient was 0.57 (±0.097) g absorbed ALA/g of ALA secreted into milk. When coding the diets as either control or milk fat depression diets, the BW-associated coefficient for LA was 0.017 (±0.0032) g absorbed LA/d per kg BW for both diets. For milk fat depression diets, milk LA secretion-associated coefficient was 1.02 (±0.119) g absorbed LA/g of LA secreted into milk, whereas it was 0.70 (±0.075) g absorbed LA/g of LA secreted into milk for control diets. Significant BW and milk performance coefficients were obtained in all LA and ALA equations, allowing the calculation of ingested and intestinal flows of LA and ALA based on measured BW, milk fat yield and milk fat content of LA and ALA. The relationships between ingested and intestinal flows of LA and ALA, BW and milk performance obtained in the present work could be integrated into renewed feed unit systems for energy and protein in dairy cows.


Assuntos
Leite , Ácido alfa-Linolênico , Feminino , Bovinos , Animais , Leite/metabolismo , Ácido alfa-Linolênico/metabolismo , Lactação , Dieta/veterinária , Peso Corporal , Ácido Linoleico/metabolismo , Ração Animal/análise , Ácidos Graxos/metabolismo , Suplementos Nutricionais
6.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931475

RESUMO

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Assuntos
Lactação , Nitrogênio , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/metabolismo , Feminino , Esterco , Leite/química , Nitrogênio/metabolismo , Ureia/metabolismo
7.
Animal ; 16(8): 100583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35797749

RESUMO

In the current economic and environmental context, the selection of livestock phenotypes combining high feed efficiency (FE) and low greenhouse gas emissions is interesting. This study aimed to quantify methane (CH4) emissions and other gas flows (carbon dioxide (CO2) and dihydrogen (H2) emissions, oxygen (O2) consumption) in growing bulls fed with two contrasting diets in order to (i) evaluate the persistence of individual variability in gas flows through time, and (ii) assess the inter-individual relationship between gas flows and FE across diets. Charolais bulls were fattened for 6 months during two consecutive years in two independent batches (50-51 per year). In each batch, half of the animals received a total mixed ad libitum ration either based on maize silage (62% dietary DM) or high-starch concentrate (MS-S), and half based on grass silage (59% dietary DM) and high-fibre concentrate (GS-F). The absolute gas flows (g/d) were individually measured with 2 GreenFeed systems during 88 days (group 1) and 64 days (group 2). All gas flows were also expressed in g/kg DM intake (gas yield), in g/kg average daily gain (CH4 intensity) and residual of daily emissions for CH4 (R CH4). Different FE metrics (residual feed intake (RFI), residual gain (RG) and feed conversion efficiency (FCE)) were investigated during the same period. The relationships between gas flows and FE metrics were tested by linear regression with the diet as fixed effect. For both diets, we observed a consistent individual variability over the measurement period for absolutes values (g/d) of CH4, CO2, and O2 (repeatability >0.7 for GS-F and >0.6 for MS-S). Gas flows (g/d) were positively correlated with RFI with both diets: animals that ingested food in excess of their theoretical maintenance and growth requirements emitted more CH4, CO2 and consumed more O2. The positive relationship between absolute CH4 emissions and RFI highlighted the interest for low-CH4 emitters and efficient growing bulls when fed with high-energy diets rich in starch or fibre. For both diets, RCH4, CH4 yield and CH4 intensity were not related to RFI whereas a significant negative relationship was reported between CH4 intensity and RG, and FCE. These data suggest that intake is the main driver of the phenotypic relationships between CH4 traits and RFI. Further studies including larger numbers of animals on highly contrasting energy diets are needed to investigate the underlying biological regulatory mechanisms of the methanogenic potential of an animal in relation to production traits.


Assuntos
Dióxido de Carbono , Metano , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta , Masculino , Silagem/análise , Amido
8.
J Dairy Sci ; 105(6): 5004-5023, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35450714

RESUMO

Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large scale is difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) between the animal (milk, plasma, or tissues) and its diet has been proposed as a biomarker of the efficiency of N utilization in a range of production systems and ruminant species. The aim of this study was to assess the ability of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (grams of N in milk per day) and mean N intake (grams of N intake per day) obtained from each sampling period, which lasted 9.0 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were analyzed for natural 15N abundance (δ15N), and then the N isotopic discrimination between the animal and the dietary treatment was calculated (Δ15n = δ15Nanimal - δ15Ndiet). Data were analyzed through mixed-effect regression models considering the experiment, sampling period, and dietary treatment as random effects. In addition, repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation artificially increased both MNE and Δ15N, leading to a positive rather than negative relationship, and this limited the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE decreased in a particular experiment (i.e., higher repeatability values), we observed a greater ability of Δ15N to predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE in mid- and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments and between animals. The root mean squared prediction error as a percentage of average observed value was 6.8%, indicating that the model only allowed differentiation between 2 cows in terms of MNE within a CG if they differed by at least 0.112 g/g of MNE (95% confidence level), and this could represent a limitation in predicting MNE at the individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG the top 25% from the lowest 25% individuals in terms of MNE was significant, indicating that it is possible to distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group animals for precision feeding.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Biomarcadores , Bovinos , Dieta/veterinária , Feminino , Lactação/metabolismo , Leite/química , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Ruminantes/metabolismo
9.
J Dairy Sci ; 105(1): 301-312, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763916

RESUMO

Urine is a highly suitable biological matrix for metabolomics studies. Total collection for 24-h periods is the gold standard as it ensures the presence of all metabolites excreted throughout the day. However, in animal studies, it presents limitations related to animal welfare and also due to alterations of the metabolome originating from the use of acid for preventing microbial growth or microbial contamination. In this study, we investigated whether spot urine collection is a practical alternative to total collection for metabolomic studies in lactating cows. For this purpose, we collected urine samples from 4 lactating Holstein cows fed 4 diets in a 4 × 4 Latin square design. Urine was collected for 24 h using a collecting device (i.e., total collection) or collected once per day 4 h after the morning feeding (i.e., spot urine collection). Dietary treatments differed by the amount of nitrogen content (high vs. low) and by the nature of the energy (starch vs. fiber). Urine metabolome was analyzed by 2 untargeted complementary methods, nuclear magnetic resonance and hydrophilic-interaction liquid chromatography (HILIC) coupled to a time-of-flight mass spectrometer, and by 1 targeted method, HILIC-tandem mass spectrometry. Although sampling technique had an effect on the abundance of metabolites detected, spot urine samples were equally capable of showing differences in urine metabolome than samples from total collection. When considering nitrogen levels in the diet, the robustness and precision for discriminating high- and low-nitrogen diets was equally achieved with both sampling techniques. A total of 22 discriminant metabolites associated with the N level of diets were identified from untargeted HILIC coupled to a time-of-flight mass spectrometer (n = 9) and nuclear magnetic resonance (n = 11), and 2 from targeted HILIC-tandem mass spectrometry. Alternatively, starch or fiber in the diet induced less changes in the metabolome that were not clearly discriminated independently of the sampling technique. We concluded that spot urine collection can successfully reveal differences in the urine metabolome elicited by dietary N levels and be used as a substitute of total urinary 24-h collection for metabolomic studies.


Assuntos
Lactação , Coleta de Urina , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Metaboloma , Metabolômica , Leite , Nitrogênio/metabolismo , Rúmen/metabolismo , Coleta de Urina/veterinária
10.
Animal ; 14(7): 1422-1437, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31971121

RESUMO

For their glucose supply, ruminants are highly dependent on the endogenous synthesis in the liver, but despite the numerous studies that evaluated hepatic glucose production, very few simultaneously measured hepatic glucose production and uptake of all precursors. As a result, the variability of precursor conversion into glucose in the liver is not known. The present study aimed at investigating by meta-analysis the relationships between hepatic glucose net release and uptake of precursors. We used the FLuxes of nutrients across Organs and tissues in Ruminant Animals database, which gathers international results on net nutrient fluxes at splanchnic level measured in catheterized animals. Response equations were developed for intakes up to 41 g DM intake/kg BW per day of diets varying from 0 to 100 g of concentrate/100 g DM in the absence of additives. The net hepatic uptake of propionate, α-amino-N and l-lactate was linearly and better related to their net portal appearance (NPA) than to their afferent hepatic flux. Blood flow data were corrected for lack of deacetylation of the para-aminohippuric acid, and this correction was shown to impact the response equations. To develop response equations between the availability of precursors (portal appearance and hepatic uptake) and net glucose hepatic release, missing data on precursor fluxes were predicted from dietary characteristics using previously developed response equations. Net hepatic release of glucose was curvilinearly related to hepatic supply and uptake of the sum of precursors, suggesting a lower conversion rate of precursors at high precursor supply. Factors of variation were explored for the linear portion of this relationship, which applied to NPA of precursors ranging from 0.99 to 9.60 mmol C/kg BW per h. Hepatic release of glucose was shown to be reduced by the portal absorption of glucose from diets containing bypass starch and to be increased by an increased uptake of ß-hydroxybutyrate indicative of higher body tissue mobilization. These relationships were affected by the physiological status of the animals. In conclusion, we established equations that quantify the net release of glucose by the liver from the net availability of precursors. They provide a quantitative overview of factors regulating hepatic glucose synthesis in ruminants. These equations can be linked with the predictions of portal absorption of nutrients from intake and dietary characteristics, and provide indications of glucose synthesis from dietary characteristics.


Assuntos
Glucose , Fígado , Ruminantes , Animais , Dieta , Gluconeogênese , Glucose/metabolismo , Fígado/metabolismo , Ruminantes/fisiologia
11.
J Dairy Sci ; 103(1): 396-409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733854

RESUMO

The aim of this study was to determine the effects of pretreatment with reducing sugars or with an enzymatic cocktail before extrusion of fava bean on intake, milk yield and composition, N partitioning, and plasma and ruminal parameters. The main hypothesis was that these pretreatment conditions would allow better N protection in the rumen compared with classic pretreatment before extrusion, thanks to an increase of sugar proportion, either exogenous or endogenous with enzymatic actions. Sixteen Holstein cows were used in a 4 × 4 Latin square design experiment. Cow were fed a diet with a 56:44 forage to concentrate ratio and containing 16.2% of crude protein (CP; dry matter basis). Concentrate consisted of fava bean:linseed blends (90:10%, raw basis) distributed either raw, extruded after pretreatment without additive, extruded after pretreatment with reducing sugars, or extruded after pretreatment with an enzymatic cocktail. The experimental blends provided 53% of total CP in the diet. Intake, milk yield and composition, ruminal pH, volatile fatty acids and ammonia kinetics, apparent total-tract nutrient digestibilities and N partitioning, Maillard compounds in feed and feces, plasma AA, and 15N natural enrichment were measured. Data were analyzed using analysis of variance according to the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Extrusion without additive during pretreatment led to higher contents of Maillard compounds in the blend, a lower enzymatic CP degradability, a numerically lower ammonia content in ruminal fluid, and a trend of higher plasma EAA concentration, all suggesting a decrease in degradability of proteins in the rumen, and a subsequent increase in metabolizable protein supply. Compared with pretreatment without additive, adding reducing sugars or an enzymatic cocktail during pretreatment led to an increase in Maillard compound contents in the extruded blends, and to an increase (+50 mg/L) in rumen ammonia content. With reducing sugars, digestibility of Nɛ-carboxymethyl-lysine was numerically lower, and plasma EAA concentration tended to decrease, suggesting an overprotection of proteins in the intestine. With the enzymatic cocktail, plasma EAA concentration was similar than without additive during pretreatment, suggesting a similar metabolizable protein supply with both treatments. Finally, no change in N partitioning between milk, urine, and feces was observed whatever the diet.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Manipulação de Alimentos/métodos , Nitrogênio/metabolismo , Vicia faba , Amônia/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Enzimas , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Lactação/efeitos dos fármacos , Leite/química , Rúmen/metabolismo , Açúcares
12.
Animal ; 13(12): 2821-2829, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31199219

RESUMO

Residual feed intake (RFI) is an alternative measure of feed efficiency (FE) and is calculated as the difference between actual and expected feed intake. The biological mechanisms underlying animal-to-animal variation in FE are not well understood. The aim of this study was to investigate the digestive ability of beef cows selected for RFI divergence as heifers, using two contrasted diets. Fifteen 4-year-old beef cows were selected from a total of 69 heifers based on their RFI following the feedlot test. The selected heifers were ranked into high-RFI (+ 1.02 ± 0.28, n = 8) and low-RFI (-0.73 ± 0.28, n = 7), and a digestibility trial was performed after their first lactation. Both RFI groups were offered two different diets: 100% hay or a fattening diet which consisted of a DM basis of 67% whole-plant maize silage and 33% high starch concentrates over four experimental periods (two per diet). A diet effect was observed on feed intake and apparent digestibility, whereas no diet × RFI interaction was detected (P > 0.05). Intake and apparent digestibility were higher in cows fed the fattening diet than in those fed the hay diet (P < 0.0001). DM intake (DMI) and organic matter apparent digestibility (OMd) were repeatable and positively correlated between the two subsequent periods of measurements. For the hay and fattening diets, the repeatability between periods was r = 0.71 and r = 0.73 for DMI and r = 0.87 and r = 0.48 for OMd, respectively. Moreover, both intake (r = 0.55) and OMd (r = 0.54) were positively correlated (P < 0.05) between the hay and fattening diets. Significant differences between beef cows selected for divergence in RFI as heifers were observed for digestive traits (P < 0.05), DM and organic matter (OM) apparent digestibility being higher for low-RFI cows. Overall, this study showed that apparent digestibility contributes to between-animal variation in FE in beef cows.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Ingestão de Alimentos , Animais , Dieta/veterinária , Digestão , Feminino , Lactação , Fenótipo , Silagem , Amido , Zea mays
13.
J Dairy Sci ; 102(6): 5130-5147, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30981491

RESUMO

The objective was to test the effects of replacing soybean meal in dairy cow diets with either raw or extruded faba bean:linseed or lupin:linseed blends on intake, milk yield and composition, N partitioning, and ruminal and plasma parameters. Our main hypotheses were that N from extruded blends was less degradable in the rumen than N from raw seeds, and that a higher extrusion temperature favored ruminal protection of proteins and milk protein yield, and lowered urinary N excretion. Eight Holstein cows fitted with ruminal cannulas were used in two 4 × 4 Latin square design experiments conducted in parallel. In both experiments, cows were fed diets with a crude protein content of 14.6%, containing 60% of forage (dry matter basis). Treatments differed by the composition of the concentrates: control in both experiments was based on soybean meal, and experimental treatments were based on proteaginous:linseed (90:10%) blends consisting of faba bean blends (first experiment) or lupin blends (second experiment) presented either raw, extruded at 140°C, or extruded at 160°C. Intake, milk yield and composition, ruminal pH, volatile fatty acids and ammonia kinetics, digestibility, N partitioning, Maillard compounds in feed and feces, plasma AA, and 15N natural enrichment were measured. Data were analyzed using ANOVA according to the MIXED procedure of SAS (version 9.4, SAS Institute Inc., Cary, NC). Ammonia content in ruminal fluid did not significantly change when soybean meal was replaced by either raw or extruded faba bean, but tended to be higher with lupin. Milk yield was increased by 2.6 kg with faba bean blend extruded at 140°C compared with faba bean blend extruded at 160°C. Milk fat and milk protein concentrations were decreased by 3.1 and 2.3 g/kg, respectively, with lupin blends compared with soybean meal. Nitrogen partitioning between milk, feces, and urine did not change. Nitrogen apparent digestibility decreased by 3 g/100 g of N between faba bean blend extruded at low and at high temperatures. The content of Maillard compounds in feces was higher with blends extruded at 160°C than with raw or extruded at 140°C blends within both experiments. Total plasma AA tended to be higher with extruded blends than with raw in the faba bean experiment. Both extrusion temperatures appeared to protect dietary proteins from ruminal degradability, but proteins seemed to be overprotected at 160°C.


Assuntos
Ração Animal , Bovinos/metabolismo , Linho , Nitrogênio/metabolismo , Sementes , Vicia faba , Animais , Indústria de Laticínios , Dieta/veterinária , Proteínas na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Linho/metabolismo , Lactação , Leite/química , Proteínas do Leite/análise , Rúmen/metabolismo
14.
J Dairy Sci ; 102(7): 5811-5852, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030912

RESUMO

Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.


Assuntos
Criação de Animais Domésticos/métodos , Ciências da Nutrição Animal/métodos , Nitrogênio/metabolismo , Ruminantes/metabolismo , Ração Animal/análise , Ciências da Nutrição Animal/instrumentação , Fenômenos Fisiológicos da Nutrição Animal , Animais
15.
J Dairy Sci ; 102(4): 3053-3070, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738686

RESUMO

We sought to establish predictive response models of milk fatty acid (FA) yields or concentrations from their respective duodenal flow, rumen digestive parameters, or diet characteristics in dairy cows, with a special focus on cis and trans isomers of C18:1, C18:2, odd- and branched FA, and mammary de novo synthesized FA. This meta-analysis was carried out using data from trials with nature of forage, percentage of concentrate, supplementation of diets with vegetable oils or seeds, and marine products' animal fats as experimental factors. The data set included 34 published papers representing 50 experiments with 142 treatments. Increasing duodenal C18 FA flow induced a quadratic increase in milk total C18 yield and a linear decrease in milk C4:0 to C14:0 concentration. Intra-experimental predictive response models of individual milk cis C18:1 isomers (Δ 11 to 15 position) from their respective duodenal flows had coefficients of determination (R2) ranging from 0.74 to 0.99, with root mean square error varying from 0.19 to 0.96 g/d, 0.02 to 0.10% of total FA, and 0.03 to 0.29% of C18 FA. Models predicting milk trans C18:1 isomer yields or concentrations had R2 greater than 0.90 (except for trans-4 and trans-10 C18:1) with root mean square error varying from less than 0.1 to 5.2 g/d. Linear regressions for C18:2n-6, trans-10,cis-12 CLA, and trans-11,trans-13 CLA were calculated according to their respective duodenal flows. Quadratic models of milk C18:3n-3 yield or concentration from its duodenal flow had R2 values above 0.97. Models of amounts desaturated from C18:0 into cis-9 C18:1 and trans-11 C18:1 into cis-9,trans-11 CLA indicated that the contribution of C18:0 and trans-11 C18:1 desaturation to respective cis-9 C18:1 and cis-9,trans-11 CLA yields in milk fat was 83.8% (±0.75) and 86.8% (±2.8). Furthermore, when cows were fed marine products, our results could indicate a lower mammary uptake of C18:0 and trans-11 C18:1 in proportion to their respective duodenal flow, with no associated change in mammary Δ9-desaturase activity. Yields or concentrations of C15:0, C17:0, iso-C15:0, iso-C17:0, anteiso-C15:0, and anteiso-C17:0 were dependent on their respective duodenal flow or concentration at duodenum, but synthesis of these FA from C3 units for linear-chain odd FA, and from C2 units for branched-chain FA was suggested, respectively. Several milk C18 FA concentrations were closely related to their duodenal concentrations with slopes of the linear models close to the bisector; this could reflect a priority for the use of these duodenal C18 FA by the mammary gland to favor their high concentration in plasma triglycerides and nonesterified FA, which are preferentially taken up by the mammary gland.


Assuntos
Bovinos/metabolismo , Dieta/veterinária , Duodeno/metabolismo , Ácidos Graxos/metabolismo , Leite/metabolismo , Animais , Gorduras na Dieta/metabolismo , Ácidos Graxos/química , Feminino , Trânsito Gastrointestinal , Isomerismo , Lactação , Óleos de Plantas/metabolismo , Rúmen/metabolismo , Ruminação Digestiva
16.
J Environ Manage ; 231: 982-988, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602259

RESUMO

Livestock is the main source of methane (CH4) emissions. It is important to accurately determine emissions from ruminants that meet standardized international guidelines for national greenhouse gas inventories. A new method to improve the accuracy of CH4 emissions that complies with IPCC rules for a Tier 3 method is described and evaluated. This method, developed by INRA (French Institute for Agricultural Research), was applied to the French inventory of CH4 emissions by ruminants and compared with the IPCC Tier 2 method. For enteric CH4, depending on the animal category, the INRA CH4 emission estimates lay between 88% and 114% of IPCC's. The INRA/IPCC ratio for enteric emission was close to unity and did not differ between methods (P = 0.43) for adult cows (i.e. most cattle). In France, feedlot manure is stored in aerobic conditions, and so the INRA/IPCC fit for manure emission was poorer (P < 0.05). The INRA/IPCC fit for enteric CH4 was very close between methods to that for total CH4 (P = 0.39), enteric CH4 representing 93% of total emissions. The main improvement is the use of a robust equation (from numerous data and diets), based on digestible organic matter intake (DOMI) corrected for the digestive interactions, to predict CH4 consistently from enteric and manure sources. It was developed for the French livestock inventory but is customizable for other countries. This new improved CH4 estimation method, based on equations from a large literature database, complies with IPCC rules for a Tier 3 method.


Assuntos
Metano , Ruminantes , Animais , Bovinos , Dieta , Feminino , França , Esterco
17.
Animal ; 13(4): 727-739, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30105960

RESUMO

Dietary and ruminal factors modify the ruminal biohydrogenation (RBH) of polyunsaturated fatty acids (FA), with duodenal FA flows being quantitatively and qualitatively different from FA intake. Using a meta-analysis approach from a database on duodenal flows of FA in ruminants, this study aimed to determine predictive equations for duodenal and absorbed flows of saturated FA, C18:1, C18:2 and C18:3 isomers, odd- and branched-chain FA (OBCFA), C20:5n-3, C22:5n-3 and C22:6n-3 and to quantify the effects of dietary and digestive factors on those equations. The database was divided into four subsets: forage, seed, vegetable oils or animal fats (oil/fat), and fish products (fish) subsets. Models of duodenal and absorbed FA flows were obtained through variance-covariance analysis. Effects of potential interfering factors (conservation mode and botanical families of forages, lipid source, technological processing of lipid supplements, diet composition and animal characteristics) were analysed. We obtained 83 models for duodenal FA flows as a function of FA intake for saturated FA (C14:0, C16:0 and C18:0), C18:1, C18:2 and C18:3 isomers and seven other models for OBCFA. For the seed/oil/fat subset, intakes of total C18:3, C18:2 and starch content increased the duodenal t11-C18:1 flow with 0.08, 0.16 and 0.005 g/kg of dry matter intake (DMI), respectively, whereas intake level [(DMI×100)/BW] decreased it. The c9c12c15-C18:3 RBH was higher for oil/fat than seed (96.7% v. 94.8%) and a protective effect of Leguminosae v. Gramineae against RBH for that FA appeared in the forage subset. The duodenal C17:0 flow increased with starch content and decreased with ruminal pH, respectively, whereas duodenal iso-C16:0 flow decreased with dietary NDF content for the seed/oil/fat subset. The duodenal C20:5n-3, C22:5n-3 and C22:6n-3 flows depended on their respective intake and the inhibitory effect of C22:6n-3 on duodenal C18:0 flow was quantified. Thirteen models of absorbed FA flows were performed depending on their respective duodenal flows. This study determined the effects of different qualitative and quantitative dietary and digestive factors, allowing for improved predictions of duodenal and absorbed FA flows.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Ácidos Graxos Insaturados/metabolismo , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Feminino , Absorção Intestinal , Modelos Biológicos , Rúmen , Especificidade da Espécie
18.
Animal ; 12(9): 1827-1837, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29284553

RESUMO

Animal proteins are naturally 15N enriched relative to the diet and the extent of this difference (Δ15Nanimal-diet or N isotopic fractionation) has been correlated to N use efficiency (NUE; N gain or milk N yield/N intake) in some recent ruminant studies. The present study used meta-analysis to investigate whether Δ15Nanimal-diet can be used as a predictor of NUE across a range of dietary conditions, particularly at the level of between-animal variation. An additional objective was to identify variables related to N partitioning explaining the link between NUE and Δ15Nanimal-diet. Individual values from eight publications reporting both NUE and Δ15Nanimal-diet for domestic ruminants were used to create a database comprising 11 experimental studies, 41 treatments and individual animal values for NUE (n=226) and Δ15Nanimal-diet (n=291). Data were analyzed by mixed-effect regression analysis taking into account experimental factors as random effects on both the intercept and slope of the model. Diets were characterized according to the INRA feeding system in terms of N utilization at the rumen, digestive and metabolic levels. These variables were used in a partial least squares regression analysis to predict separately NUE and Δ15Nanimal-diet variation, with the objective of identifying common variables linking NUE and Δ15Nanimal-diet. For individuals reared under similar conditions (within-study) and at the same time (within-period), the variance of NUE and Δ15Nanimal-diet not explained by dietary treatments (i.e. between-animal variation plus experimental error) was 35% and 55%, respectively. Mixed-effect regression analysis conducted with treatment means showed that Δ15Nanimal-diet was significantly and negatively correlated to NUE variation across diets (NUE=0.415 -0.055×Δ15Nanimal-diet). When using individual values and taking into account the random effects of study, period and diet, the relationship was also significant (NUE=0.358 -0.035×Δ15Nanimal-diet). However, there may be a biased prediction for animals close to zero, or in negative, N balance. When using a novel statistical approach, attempting to regress between-animal variation in NUE on between-animal variation in Δ15Nanimal-diet (without the influence of experimental factors), the negative relationship was still significant, highlighting the ability of Δ15Nanimal-diet to capture individual variability. Among the studied variables related to N utilization, those concerning N efficiency use at the metabolic level contributed most to predict both Δ15Nanimal-diet and NUE variation, with rumen fermentation and digestion contributing to a lesser extent. This study confirmed that on average Δ15Nanimal-diet can predict NUE variation across diets and across individuals reared under similar conditions.


Assuntos
Proteínas na Dieta , Nitrogênio , Ruminantes , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Dieta , Proteínas na Dieta/metabolismo , Digestão , Feminino , Lactação , Leite , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Rúmen , Ruminantes/fisiologia
19.
J Dairy Sci ; 100(4): 2637-2650, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161181

RESUMO

This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH4) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 1010 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended to decrease CH4 emission (26.5%, on average, when expressed per kilogram of milk or 4% fat-corrected milk). Only P63 supplementation to cows fed the HS diet affected the concentration of some milk FA, such as cis isomers of 18:1 and intermediates of ruminal biohydrogenation of polyunsaturated FA. Overall, bacterial DFM could be useful to stabilize ruminal pH. Their effects on CH4 production mitigation and milk FA profile depended on DFM strain and diet and should be confirmed under a greater variation of dietary conditions.


Assuntos
Leite/química , Amido/metabolismo , Animais , Bovinos , Dieta/veterinária , Digestão/efeitos dos fármacos , Ácidos Graxos , Feminino , Fermentação , Lactação/efeitos dos fármacos , Metano/biossíntese , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...